Slice sampling covariance hyperparameters of latent Gaussian models

نویسندگان

  • Iain Murray
  • Ryan P. Adams
چکیده

The Gaussian process (GP) is a popular way to specify dependencies between random variables in a probabilistic model. In the Bayesian framework the covariance structure can be specified using unknown hyperparameters. Integrating over these hyperparameters considers different possible explanations for the data when making predictions. This integration is often performed using Markov chain Monte Carlo (MCMC) sampling. However, with non-Gaussian observations standard hyperparameter sampling approaches require careful tuning and may converge slowly. In this paper we present a slice sampling approach that requires little tuning while mixing well in both strongand weak-data regimes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carlo Implementation of Gaussian Process Models forBayesian Regression and Classi

Gaussian processes are a natural way of deening prior distributions over functions of one or more input variables. In a simple nonparametric regression problem, where such a function gives the mean of a Gaussian distribution for an observed response, a Gaussian process model can easily be implemented using matrix computations that are feasible for datasets of up to about a thousand cases. Hyper...

متن کامل

Monte Carlo Implementation of Gaussian Process Models for Bayesian Regression and Classification

Gaussian processes are a natural way of defining prior distributions over functions of one or more input variables. In a simple nonparametric regression problem, where such a function gives the mean of a Gaussian distribution for an observed response, a Gaussian process model can easily be implemented using matrix computations that are feasible for datasets of up to about a thousand cases. Hype...

متن کامل

Slice Sampling on Hamiltonian Trajectories

Hamiltonian Monte Carlo and slice sampling are amongst the most widely used and studied classes of Markov Chain Monte Carlo samplers. We connect these two methods and present Hamiltonian slice sampling, which allows slice sampling to be carried out along Hamiltonian trajectories, or transformations thereof. Hamiltonian slice sampling clarifies a class of model priors that induce closed-form sli...

متن کامل

Sparse Log Gaussian Processes via MCMC for Spatial Epidemiology

In this work a fully independent training conditional (FITC) sparse approximation is used to speed up GP computations in the study of the spatial variations in relative mortality risk in a point referenced health-care data. The sampling of the latent values is sped up with transformations taking into account the approximate conditional posterior precision. Log Gaussian processes (LGP) are an at...

متن کامل

Pseudo-marginal Bayesian inference for supervised Gaussian process latent variable models

We introduce a Bayesian framework for inference with a supervised version of the Gaussian process latent variable model. The framework overcomes the high correlations between latent variables and hyperparameters by using an unbiased pseudo estimate for the marginal likelihood that approximately integrates over the latent variables. This is used to construct a Markov Chain to explore the posteri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010